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COLLECTIVE INTELLIGENCE

= Digital interaction platforms enable
massive-scale collaboration

= Social media

= Crowdsourcing

= Human computation
= Sharing economy

= “Smartness’ stems from combination
of human and machine capabilities

= Can only be achieved if humans
engage and are treated fairly
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SMARTSOCIETY

= Hybrid and Diversity-Aware Collective
Adaptive Systems: “when people meet
machines to build a smarter society”

= €6.8M FET Integrated Project, co-ordinated
by University of Trento (2013-2016)

= Brought together Al, computer science,
human factors, privacy, ethics
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RIDESHARING

= An example sharing economy domain
for smart platforms

= Involves human focus with
combinatorial computational problem

= Focus on providing technology that
addresses diversity among users




ASK & SHARE

= Doing things together without knowing
the what/who/how

= Combines human-driven crowdsourcing
with machine-driven activity
recommendation

= A first step toward general collective
human-machine problem solving
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THE SMARTSOCIETY PLATFORM
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THE SMARTSOCIETY PLATFORM
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SOCIAL ORCHESTRATION
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TASK COMPOSITION

= Combinatorial problem of allocating groups of users to shared tasks, where task
requests come from users

= Hard constraints restrict the groupings and task properties that can be realised in
principle

= Soft constraints determine which coalition structures and task features are
preferred by system and/or users
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DIVERSITY V3. TASK COMPOSITION

= In traditional mechanism design, global allocations are computed given individual
preferences and global criteria
= E.g. social welfare maximisation, Pareto optimality, strategy-proofness, etc.

= Mechanisms are proposed that provably satisfy these properties, solution can
therefore be imposed on users

= Diversity implies that users cannot report their preferences
= System never captures all relevant decision variables
= Solutions cannot be computed/considered exhaustively
= Utility of solutions cannot be determined by users a priori
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TASK ALLOCATION VS TASK RECOMMENDATION

Key problems:
= 1. How to compute “optimal” sets of solutions
= 2. How to influence users’ choices

= 3. How to learn users’ preferences
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OPTIMALITY CRITERIA

= User's utility function u; depends on user’s
requirements and preferences

= Global (system) utility function depends on
social welfare and maximal task completion
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COMPUTING ALLOCATIONS
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INFLUENCING USERS

= We want to modify users' utility artificially so that their
choices lead to a feasible global solution

= Explicit Approaches:
= intervention
= (possible) future reward

= Implicit Approaches:
= discounts
= taxation
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TAXATION SCHEME
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RESULTS
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THE SOCIAL CHARTER
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UNBIAS

= UnBias: Emancipating Users Against
Algorithmic Biases for a Trusted Digital
Economy

UNEIAS

The University of UNIVERSITY OF

Nottingham

GXLV

= £1.1M 2-year project led by Nottingham
with Edinburgh and Oxford

= Focus on young people’s perception of IL
how their lives are influenced by
algorithms
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THE ROLE OF ALGORITHMS
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THE ROLE OF DATA

Two Petty Theft Arrests
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MAKING ALGORITHMS FAIR
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CRITERIA: GAME THEORY

= Social Welfare: The solution maximises the sum of the utilities of all agents.

= Equity: The solution minimises the difference between all agents’ individual
utilities among all possible solutions.

= MaxiMin: The solution maximises the utility of the agent who is worst off.

= Monotonicity: If a different outcome is produced when agents change their
preferences, it must be because at least one player benefits from that.
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CRITERIA: MACHINE LEARNING

= Unawareness: An algorithm is fair so long as any sensitive attributes are not
explicitly used in the decision-making process.

= Rawlsian fairness: Those who are at the same level of ability, and have the same
willingness to use them, should have the same prospect of success regardless.

= Individual fairness: Algorithm provides similar outcomes for similar individuals,
ignoring their protected attributes.

= Demographic parity: An algorithm is fair if its predictions are independent of the
sensitive attributes across sub-populations.
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CRITERIA: MACHINE LEARNING

= Equal Opportunity: An algorithm is fair if it is equally accurate for each value of
the sensitive attributes.

= Equalized Odds: An algorithm is fair if it is equally accurate for each value of the
sensitive attributes, for each values of the non-sensitive attributes.

= Counterfactual fairness: A decision is fair toward an individual if it gives the
same predictions in the observed world and a world where the individual has
always belonged to a different demographic group.
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EXPERIMENT

Student’s utility = the utility achieved based on the score the student gave to
the project the algorithm assigns to her

Student’s distance = the total difference between the student’s utility and those
of all other students, given the projects assigned to everybody by the algorithm

For each algorithm, the table below shows the sum of all student’s utilities (total
utility) and the sum of students’ distances for all students (total distance).

Al A2 A3 A4 A5

Total Utility 168 185 213 178 136

Total Distance

0.2520 | 1.4540 | 0.9940 | 1.4520 | 0.1320
(1073 *)
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EXPERIMENT
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USER OPINIONS (BEFORE

Given the allocations computed by each algorithm, which of them would you prefer most? You can list more than
one algorithm in each line.

1 N ¢ (2675

A2 |0
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A« I : )
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Given the allocations computed by each algorithm, which of them would you prefer least? You can list more than
one algorithm in each line.
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EXPLANATION

The following is an informal description of how each algorithm works:

Algorithm 1 (A1) minimises the total distance while guaranteeing at least 70%
of maximum total utility.

Algorithm 2 (A2) maximises the minimum individual student utility while
guaranteeing at least 70% of the maximum total utility.

Algorithm 3 (A3) maximises total utility.
Algorithm 4 (A4) maximises the minimum individual student utility.

Algorithm 5 (A5): minimises total distance.
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USER OPINIONS (AFTER)

Given the explanation of how the algorithms work and the allocations computed by each algorithm, which of them
would you prefer most? You can list more than one algorithm in each line.
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Given the explanation of how the algorithms work and the allocations computed by each algorithm, which would
you prefer least? You can list more than one algorithm in each line.

A1 [ 1 (10%)

A2 [ 1 (10%)
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CONCLUSION

= Smart societies should be fair both for ethical reasons and to be sustainable
= Algorithmic fairness itself is a complex and poorly understood notion
» Broader debate is needed to establish solid theoretical framework

= Our (small) contribution
= Multiagent systems view captures distribution of “wealth”, not just statistical properties
= Might provide models that capture all stakeholders’ objectives better
= Empirical research to understand human notions of fairness

= Is the complexity of solving the general problem the same as that of "optimal
political economy” for a globalized society?
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WHAT WILL IT BE?

Promise Peril

Man-machine
collaboration

Personalisation

Humans as
cheap labour

Collective
intelligence




