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Vision: capitalize on increasing availability of data to extract 
actionable intelligence in order to improve clinical practice 
(saves lives, reduces costs) and advance medical discovery

Healthcare practice = Observational data 
(Natural experiments!)

Actionable intelligence
(Predictions, recommendations, practice 

guidelines, treatment effects, etc)

Machine Learning & Medicine 

Diagnosis and 
Prognosis

Screening and 
testing

Treatments and 
interventions 4



The “Augmented” MD
• Machine learning 

…can’t do medicine! 
...can provide doctors with actionable information!

Data

Machine learning 
algorithms

Clinical
Practice

Personalized risk scores
Personalized treatment  effects
Data-induced hypotheses
Phenotypes
Recommendations
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New Tools and Methods

• Learning/decision making 
– from time-series data
– from many kinds of data (images, vital signs, etc.)

• Causal inference
• Graphical models
• Reinforcement learning
• Deep learning
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Long Road .... 
Some Steps Along the Way

• Individualized treatment effects
• Risk scoring for critical care

– Problem and why it is important
– Current solutions and limitations
– New solutions and impact
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Individualized Treatment Effects
- Most treatments have different effects for different 

patients
- Not enough to know that the treatment works well on 

average, need to know its effect on an individual!

Which treatment should be used for this patient?
- chemotherapy regime, medication, type of surgery ...

Use machine learning to estimate individualized treatment 
effects from observational data without using clinical trials

– why so important?
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Who should get a heart?
Ann Bob

• Factual outcome
– How long will Ann/Bob survive while waiting?

• Counterfactual outcome
– How much will Ann/Bob benefit from this heart had she/he got it ?
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Evaluation on Real-World Data
United Network for Organ Transplantation (UNOS)
• ALL patients registered for heart transplantation in 

US in 1985-2015
• 60,000+ patients received heart transplant
• 35,000+ patients wait-listed but did not receive heart 

transplant
– Date of waitlisting + survival
– 33 features of patients
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Intervention:
LVAD



Number of LVADs increases in past decade

2017:
LVAD implantation cost $175,000 for the procedure but 
carried a 6-year total price tag of $726,000 11



Population-level Survival Benefit of LVADs:
Kaplan-Meier Estimates
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Personalized Medicine: 
Who should get an LVAD? When?



A young diabetic patient in the wait-list had an LVAD implanted. 
Her expected LVAD survival benefit was overestimated and she died 
before getting a transplant! 

Covariates

Age 34

Gender Female

Timeline

2009 20132010 20142011 2012

Registered in wait-list
Death

Listed in Status 1A

Life and Death for One Patient 
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Comorbidities Diabetes

Listed in Status 1B

LVAD implanted

What would have happened had 
we got a personalized estimate?



Individual Survival Estimates for Representative 
Patients

This patient was assigned a low priority because survival was 
estimated based on the average (“population”) estimate of LVAD 
benefits! 
Personalized Estimate: For this specific patient, the posterior 
average survival benefit -> early 2013! 

Life and Death for One Patient 

Individualized
Estimate



Estimating Causal Effects from 
Observational Data

• Most works on causal inference focused on answering the following 
question: does X cause Y (X→Y)? [Judea Pearl]

• A coarse binary hypothesis! 
• Does not quantify “context-specific” magnitude of causal effect
• Much less work has focused on estimating the magnitude of the 

effect of X on Y for an individual subject given his/her features!

• Individual-level inference of causal effects is a key problem in the 
area of precision medicine 

• Recent advances in machine learning can estimate granular causal 
effects from observational data



Not a conventional supervised learning problem!

Supervised Learning Causal Inference

• Observational data: we only observe factual outcomes of 
treatment assignment, but we need counterfactual outcomes
to estimate causal effects.

• Selection bias!

Features Features

Outcomes Outcomes

The goal is to estimate the 
underlying true function 
given the training examples

The goal is to estimate the difference 
between the true responses             and            

given the factual outcomes of
treated       and untreated      subjects



Not a conventional supervised learning problem!

Supervised Learning Causal Inference

• Observational data: we only observe factual outcomes of 
treatment assignment, but we need counterfactual outcomes
to estimate causal effects.

• Selection bias!

Features Features

Outcomes Outcomes

Straightforward regression 
problem

Performance can be assessed 
by  out-of-sample testing 

Unbalanced dataset with 
unobserved outcomes

Inference problem: need a 
measure of uncertainty 



Observational Data, not Randomized Trials
Observational EHR data:

Current clinical practice: 
- Patients not assigned to treatments randomly
- Patients (probably) not assigned to treatments optimally

Outcome

Feature

Feature
Treatment 
assignment

Treatment 
outcome

Treatment effect



Estimating Average Treatment Effects

Feature

Most medical studies 
estimate average treatment
effects -> Solved problem! 

Estimate propensity score           
(e.g. using logistic regression)

Unbiased estimator for the 
average treatment effect

Outcome
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Estimating Individualized Treatment Effects

Response surface modeling/covariate adjustment: 
• for each outcome: data -> estimate a model for that outcome
• difference of outcomes = treatment effect 
• difference of models = estimate of treatment effect

Feature

Estimate
Treatment 

Effects

Outcome
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Complexity of non-parametric models grows with the amount of 
available data (heterogeneous populations)

Non-parametric models

Nearest-neighbor
matching Causal

Forests

Bayesian Additive 
Regression Trees

(BART)Neural Networks

[Crump et al., 2008]

[Wager & Athey, 2016]

[Johansson, Shalit & 
Sontag 2016] [J. Hill, 2011]

Individualized Treatment Effects –
State-of-the-art

Our method improves on these methods by using 
a multi-task learning approach!
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Individualized Treatment Effects –
State-of-the-art (II)

Outcomes

Feature

Treated

Control

Estimated treatment outcome = 

K-NN: Use average of k neighbors

Direct Modeling: Model treatment 
assignment as an input feature

[Xie, Brand, Jan, 2012]

[Hill, 2011], [Wager & Athey, 2016]
[Johansson, Shalit & Sontag 2016] 

Previous methods ignore similarity of 
learning tasks

Multi-task Learning provides statistical efficiency
22

How did previous works model 
the response surfaces?

Virtual Twins: Fit separate 
regression models for treated and 

control populations
[Lu et al., 2017]



Individualized Treatment Effects –
State-of-the-art (III)

How did previous works 
handle selection bias?

Propensity Score 
Matching

Bayesian Inference

Representation 
Learning

[Rubins, 1978], [Imbens, 2016]

[Hill, 2011]

[Johansson, Shalit & Sontag 2017] 

Estimates only average 
treatment effects

Tunes prior based only on 
factual outcomes

Optimizes a generalization bound 
on the true loss function that 

depends only on factual outcomes

Our approach: Risk-based Empirical Bayes
We tune a multi-task prior to minimize the expected loss in 

both factual and counterfactual outcomes



How do we learn more effectively?

24

Two Pillars

Bayesian 
Multi-task Model

Risk-based Empirical 
Bayes

• Flexibility: nonparametric interactions 
between covariates and treatment 
assignment

• Data efficiency: treated and control 
models have shared parameters

Selection bias handled by tuning 
prior so as to minimize posterior 

variance of counterfactuals



Multi-task Learning for Causal Inference (I)

Multi-task model

Use a multi-task Gaussian process prior on the potential 
outcomes!
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Construct a “proxy” for the error in estimated treatment effect

Outcomes

Feature

Treated

Control

26

Factual treated
samples

Counterfactual treated
samples

Factual control
samples

Counterfactual control
samples

Bayesian framework 
provides estimates of ITE 

through the posterior 
counterfactual 

distribution

Factuals Counterfactuals

Bayesian
Risk

Multi-task Learning for Causal Inference (II)



Risk-based Empirical Bayes (I)
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Kernel Hyper-parameters

Optimal Kernel for the Prior
in terms of Bayesian risk?

Optimal prior

Theorem



Risk-based Empirical Bayes (II)

- Risk-based empirical Bayes is equivalent to learning a balanced 
linear representation (hyper-plane) in a vector-valued 
Reproducing Kernel Hilbert Space (vvRKHS)
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The Model (I)

The response surface for the “no treatment” outcome and for the 
“treatment” outcome are different!
=> Construct a kernel function with different length-scales for each 
surface using a linear coregionalization model!

Covariance function for 
the first potential 

outcome

Covariance function for 
the second potential 

outcome

Feature

Outcome
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The Model (II)

Outcome-specific 
Squared exponential 

kernel

Relevance 
parameters

Cross-outcome 
correlations
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Length-scale of a feature determines its relevance to treatment outcomes 



Our Approach is Bayesian!

Specify prior over model parameters
Compute posterior distribution of parameters 
Average over many models!
Allows computing posterior credible intervals for the survival estimates 
of every individual!

Posterior Survival 
Estimates

Covariates

Posterior distribution 
of treatment effects

Final estimate is an average 
over posterior of parameters

Bayesian Non-parametric Estimation of 
Individualized Treatment Effects
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Results: Infant Health Development Program
• Subjects: premature infants with low birth weight (747 subjects, 

25 covariates)
• Treatment: educational and family support services and pediatric 

follow-up offered during the first 3 years of life. 
• Outcomes: IQ test applied when infants reached 3 years.
• All outcomes (response surfaces) are simulated

Method Out-of-sample Estimated Error
Bayesian Multi-task GPs 1.0 ± 0.08
Balancing Counterfactual 

Regression (Sontag)
2.2 ± 0.13

BART (Hill) 2.2 ± 0.17
Causal Forests (Athey) 2.4 ± 0.23

Nearest Neighbor Matching (Xie) 4.2 ± 0.22



Powerful methodology – many 
applications

Individualized treatment effects 
- treatments, medications, procedures
• Which?
• When? 
Will revolutionize the design of clinical trials

33

A. M. Alaa and M. van der Schaar, "Bayesian Inference of 
Individualized Treatment Effects using Multi-task Gaussian Processes,"
https://arxiv.org/pdf/1704.02801.pdf



Our Approach is Bayesian!

We can use a deep learning implementation for our model as well!
Multi-task GP -> Multi-task Networks with Dropout
Risk-based Empirical Bayes -> Propensity-Dropout
The multi-task network has layers shared between treated and control 
patients, and dropout probability depends on propensity scores

Deep Counterfactual Networks



Personalized Risk Scoring 
for Critical Care

35

ICML 2016, NIPS 2016
IEEE Trans. on Biomedical Engineering, 2016



Timely Prognosis and Intervention
In the US, every year
- 200,000 hospitalized patients experience cardio-pulmonary arrests
- 75% of those patients die
- 50% of those patients could have been saved
- 75,000 unnecessary deaths in hospital
Current risk assessment methods do not work well!

What is needed?
- Timely intervention: earlier admission to Intensive Care Units
What is the problem?
- ICU space is scarce
- Hard to identify which patients must go to ICU now

Time is life - minutes matter
- Our work (Forecast ICU) saves hours, hence lives! 36



What data is available to us?

Diastolic blood pressure
Systolic blood pressure
Best motor response
Best verbal response

Eye opening
Glasgow coma scale score

Heart rate
Respiratory rate

Oxygen saturation
Temperature

Oxygen device assistance

Vital signs
Chloride

Creatinine
Glucose

Hemoglobin
Platelet count

Potassium
Sodium

Total CO2
Urea nitrogen

White blood cell count

Lab tests
Transfer

Age
Floor ID
Gender

Ethnicity
Race

Stem cell transplant
ICD-9 codes

Admission information

1 measurement / 24 hours1 measurement / 4 hours Constant
37



Physiological time-series data

• Example: Diastolic blood pressure for a patient 
hospitalized in a regular ward for more than 1000 
hours and then admitted to ICU

ICU admission

• Patient appeared stable, but was actually deteriorating 
– the true state was hidden 38



• Physiological modeling: general model for mapping 
hidden (clinical) states to observable (physiological) 
data

A general framework

Hidden States Physiological data

Model

Diagnosis
Disease Severity
Disease Progression Stage
Clinical deterioration

Clinical findings
Lab measurements
Vital signs
Observation times

Observational
EHR data

39



Observable Process, Unobservable States

• Observable physiological process 

• Unobservable true states

• Transition probabilities depend on sojourn times! 
(Semi-Markov) 40



Limitations of standard approaches

• Markov models? 
– Not adequate
– True state not observed 

• Hidden Markov Models?
– Not adequate
– Transition probabilities depend on sojourn time
– Conditionally dependent observations
– Irregularly but informatively sampled observations

• Informative censoring - absorbing states 
(observed)

41



Our New Model: 
Hidden Absorbing Semi-Markov Model 
(HASMM)

• A versatile model
• Generalizes previous models
• Captures (patient) heterogeneity
• Models the continuous-time data gathering process

Medical Applications
• Prognosis
• Disease progression
• Disease trajectories 42



• Hidden (true) state space: 
- one or more absorbing states (competing risks!)

The Hidden Absorbing Semi-Markov Model 

Learn risks/transition probabilities!
43

Cardiac arrest Respiratory arrest

Septic ShockDischarge

Transient States



Informative observation times and censoring

Censoring
An HASMM episode

• Physiological data is gathered over irregularly spaced 
intervals: model the observations via a point process

: Intensity parameter
Informative observation times = 

sampling times correlated with states

44



Informative observation times 
Observation times are modeled as a Hawkes process 

• Continuous-time jump process (like Poisson)
• Jump intensities depend on true physiological state (unlike Poisson)

= Intensity
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HASMM parameters 
• Sojourn time distribution

• Semi-Markov transition functions

• Sampling times of physiological streams: Hawkes 
point process

• Observed physiological data: multi-task Gaussian 
Process

Gamma distribution

- cumulative distribution function of state i’s sojourn time

Multinomial logistic
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HASMM parameters 
• Sojourn time distribution

• Semi-Markov transition functions

• Sampling times of physiological streams: Hawkes 
point process

• Observable process is a marked Hawkes process 
(with Gaussian Process as the mark process)

Gamma distribution

- cumulative distribution function of state i’s sojourn time

Multinomial logistic
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Forecast ICU in practice
• Hospital: UCLA Ronald Reagan Medical Center

• Cohort of 6,094 patients
- Period: March 2013 ~ June 2015 (tested July 2015 – July 

2016)
- Age: 18 ~ 100+ years
- Gender: 

- Male (3,018 patients, 49.5%) 
- Female (3,076 patients, 50.5%)

- Length of stay: 1.5 hours ~ 159 days

48



Wide Variety of Diagnoses

Percentage of patients in top 20 ICD 9 codes

49

Among 6,094 patients, 306 patients (5.0%) admitted to 
ICU unexpectedly; 5,788 patients (95.0%) discharged



Subtyping (Phenotyping)

• Discovering the different ways in which a disease 
manifests in different patients

• Key approach for personalized medicine

Infer subtype for 
each patient

Admission
information

.    .    .

50
ICML-W 2016



Performance Metrics

- TPR (True Positive Rate, i.e. Sensitivity) = True Positive/True ICU 
Patients

- TNR (True Negative Rate, i.e. Specificity) = True Negative/True 
Discharge patients

- PPV (Positive Predictive Value, i.e. Precision) = True 
Positive/Predicted ICU Patients

- NPV (Negative Predictive Value) = True Negative/Predicted Discharge 
patients

Predicted ICU 
patients

Predicted Discharge 
patients

True ICU patients True Positive False Negative
True Discharge 

patients
False Positive True Negative

51



Results: TPR vs. PPV

100% PPV 
improvement
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Results: Sensitivity vs PPV

http://medianetlab.ee.ucla.edu/MedAdvance

Algorithm AUC (TPR vs PPV)
HASMM 0.49

(Sequential) Random Forest 0.36
(Sequential) Logistic Regression 0.27

(Sequential) LASSO 0.26
HMM (Gaussian emission) 0.32

Multitask Gaussian Processes 0.30
Recurrent Neural Networks 0.29

Rothman 0.25
MEWS 0.18

APACHE II 0.13
SOFA 0.13
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Results: Timeliness

4 hours earlier than clinicians

18
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Sensitivity = 50%          
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Switching 
Ornstein-

Uhlenbeck

New methodology for learning from 
time-series data

DT-HMMCT-HMM

ED-HMM

Segment-
HMM

Sequential
Hypothesis 

Testing

Switching 
Gaussian 
Process

DT-HSMM

HASMM

Applications beyond medicine (e.g. finance) 55



“Augmented” MD
- through machine learning and artificial intelligence

• Which diseases/medical problems?
- General Practice
- Emergency care, Hospital care, ICU
- Cardiovascular diseases
- Chronic diseases
- Cystic Fibrosis
- Surgery
- Cancers

• Many lives saved
• Many resources saved
• Scientific breakthroughs: disease understanding

Join the revolution!
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