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Increased quantification of scientific 
research 

• have expanded the scope of applications of 
statistical methods 

• concept of “statistical significance” 
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In February, 2014, George Cobb, Professor 
Emeritus of Mathematics and Statistics at Mount 
Holyoke College, posed these questions to an 
ASA discussion forum: 

• Q: Why do so many colleges and grad schools 
teach p = 0.05? 

• A: Because that's still what the scientific 
community and journal editors use. 

• Q: Why do so many people still use p = 0.05? 

• A: Because that's what they were taught in 
college or grad school. 
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Cobb’s concern 

• Cobb’s concern was a long-worrisome 
circularity in the sociology of science based on 
the use of bright lines such as P < 0.05 :  

• “We teach it because it’s what we do; we do it 
because it’s what we teach.”  
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Highly visible discussions over the last few 
years 

• ScienceNews (Siegfried, 2010): “It’s science’s dirtiest 
secret: The ‘scientific method’ of testing hypotheses by 
statistical analysis stands on a flimsy foundation.”  

• Phys.org Science News Wire (2013): “numerous deep 
flaws” in null hypothesis significance testing 

• ScienceNews (Siegfried, 2014): “statistical techniques 
for testing hypotheses…have more flaws than 
Facebook’s privacy policies.”  

• “Simply Statistics” (Leek, 2014):“The problem is not that 
people use P-values poorly, it is that the vast majority of 
data analysis is not performed by people properly 
trained to perform data analysis” 
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 Researchers at the Mayo Clinic in Rochester, Minnesota  

 looked at more than 600 research articles 

 published in top physiology journals in early 2014  

 and found that bar graphs were used to describe continuous     

data 

 in more than 85% of the articles  

 They showed that very different data sets can be described 

by the same bar graph 

  As an alternative, they recommend dotplots showing every 

data point, especially for studies with small sample sizes  

April 2015 



©2017 MFMER  |  slide-10 

Key Findings: Systematic Review 

• Almost all papers use bar and line graphs to 
present continuous data 

• Impossible to critically evaluate the data 

• Sample sizes are very small (n<10 / group) 

• 78% of bar graphs show mean SE 

• >50% of papers that use non-parametric 
analysis present data as mean SE or mean SD 
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Many different data distributions can lead 
to the same bar graph… 

Symmetric Outlier Bimodal Unequal n 

Test p value 

T-test: equal var. 0.035 0.074 0.033 0.051 

T-test: Unequal var. 0.035 0.076 0.033 0.035 

Wilcoxon 0.056 0.10 0.173 0.067 
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Why you shouldn’t use a bar graph even 
if your data are normally distributed 
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1. Don’t allow you to critically evaluate continuous data 

2. Arbitrarily assign importance to bar height, rather than focusing 
on how the difference between means compares to the 
variability in the data 
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Our interpretation depends on what we see 

0 

0.00001 

0.00002 

0.00003 

0.00004 

5E-05 

0 

0.00002 

0.00004 

6E-05 

8E-05 

Mean ± SE 

Reader is a 

passive observer 

Reader is an 

active participant 



©2017 MFMER  |  slide-14 



©2017 MFMER  |  slide-15 

Data presentation is the foundation of our 
collective scientific knowledge… 

Figures are especially 

important. They often show 

data for key findings. 

Improving data presentation is 
critical to understanding many 
diseases 
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Why focus on small datasets? 

• Common in basic biomedical and biological 
sciences, translational science 

• Influence decisions about what potential 
treatments advance to clinic trials, further 
research 

• NIH highlighted problems with reproducibility, 
especially in preclinical research  
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Must try harder 

• Low number of cancer-research studies have been 
converted into clinical success  

• Major factor is the overall poor quality of published 
preclinical data  

• A warning sign should be the “shocking” number of 
research papers in the field for which the main findings 
could not be reproduced  

• The finding resonates with a growing sense of unease 
among specialist editors and not just in the field of 
oncology  

• Across the life sciences, handling corrections that have 
arisen from avoidable errors in manuscripts has become 
an uncomfortable part of the publishing process 
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Effects 

• Journal policy changes 
• PLOS Biology 

• Journal of Biological Chemistry 

• Kidney International 

• Journal of Neuroscience Research 

• Editors & reviewers using the paper when 
requesting improved data visualization 

• “Bar bar plots” Kickstarter campaign 
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Why this 
happen? 

Statistics are 
essential,  

but training  

is not always 
required  

for a PhD 
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Congratulations, 
 
Out of all 2016 PLOS Biology articles, yours was in the 
top 50 most downloaded. 
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Courses often not targeted towards 
basic scientists 
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Developing new curriculum 

1. Data visualization first, statistics second 

2. Target misconceptions & missed skills 

3. Visual approach to learning 
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Summary statistics are only meaningful 
when there are enough data to summarize 
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Reproducibility in focus 

• No one denies that irreproducibility of scientific 
research is a serious problem 

• Statistical community concern  

• Basic and Applied Social Psychology: baned p-
values (Trafimow and Marks, 2015) 

• “Reproducibility crisis” (Peng, 2015) 

• This concern was brought to the attention of the 
ASA Board 
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Let’s be clear 

• Nothing in the ASA statement is new.  

• Statisticians have been sounding the alarm 
about these matters for decades, to little avail.  

• We hoped that a statement from the world’s 
largest professional association of statisticians 
would open a fresh discussion and draw 
renewed and vigorous attention to changing the 
practice of science with regards to the use of 
statistical inference. 
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What is a p-value? 

• Informally, a p-value is the probability under a 
specified statistical model that a statistical 
summary of the data (for example, the sample 
mean difference between two compared 
groups) would be equal to or more extreme 
than its observed value. 



©2017 MFMER  |  slide-29 

Principles 

• P-values can indicate how incompatible the 
data are with a specified statistical model 

• P-values do not measure the probability that the 
studied hypothesis is true, or the probability that 
the data were produced by random chance 
alone. 

• Scientific conclusions and business or policy 
decisions should not be based only on whether 
a p-value passes a specific threshold. 
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Principles continued 

• Proper inference requires full reporting and 
transparency 

• A p-value, or statistical significance, does not 
measure the size of an effect or the importance 
of a result 

• By itself, a p-value does not provide a good 
measure of evidence regarding a model or 
hypothesis. 
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Other approaches 

• Methods that emphasize estimation over 
testing, such as confidence, credibility, or 
prediction intervals; Bayesian methods; 
alternative measures of evidence, such as 
likelihood ratios or Bayes Factors; and other 
approaches such as decision-theoretic 
modeling and false discovery rates  
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Krumholz, Circulation CQO 2015 
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Objective:  

Create tools needed to transform 
scientific publications from  

static reports into interactive datasets 
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Effective figures should: 

1. Immediately convey information about the 
study design 

2. Illustrate important findings 

3. Allow the reader to critically evaluate the data 
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Example: The line graph 

• Scientists want to know 2 things: 

1. How much do different groups overlap? 

2. Do all individuals in a group follow the same 
response pattern? 

 

Difficult or impossible to 

determine with 

a static line graph 
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Solution: Interactive Line Graph 

http://statistika.mfub.bg.ac.rs/interactive-graph/ 
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Two Options for Easy Data Entry 

1. Manual data entry 2. Upload csv file 

Download template csv file 
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View different 
summary statistics 

Semi-transparent 
shading makes it easy 

to assess overlap 
between groups 

 

Select any option; 
the graph will 

automatically update 



©2017 MFMER  |  slide-40 

Focus on specific 
groups, conditions 

or time points 
Uncheck the box 

next to any group or 
condition to delete it 

from the graph 
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View lines for any individual 

Check 
boxes to 

view 
individual 

lines 
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View change scores for any 2 conditions / time points 

Difference 
plot tab 

Change 
summary line 

Change conditions 

Show / hide groups 
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Features for Publications 

1. Save any static graph that you 
want to include in your paper 

2. Saved graphs appear in the 
“Build” menu. Readers can explore 
the entire dataset or click on a saved 
graph to explore a specific figure 
from your paper. 

3. You can download: 

- csv datafile  

- Tiff files for any saved static 
graphs 

- Xml file containing your 
interactive graphic to include in 
the supplement of your paper 
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Interactive Dotplot (in press) 
http://statistika.mfub.bg.ac.rs/interactive-dotplot/ 
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Making effective dotplots 
• Dotplots are useful for comparing values of a continuous variable across study groups 

(cross-sectional study or experimental study with independent groups) 

• Dotplots are the best choice for small datasets. The summary statistics shown in box 

plots and violin plots are only meaningful if you have enough data to summarize.  

Step 1: 

Make all 

data points 

visible 

Step 2: 
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Examine subgroups (i.e. male vs. female)  



©2017 MFMER  |  slide-47 

Show clusters of non-independent data 
(replicates, mice from the same litter)  

Between-Group 
Clusters 

Within-Group 
Clusters 

Between & Within-
Group Clusters 
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Graphics for: 
-  Cross sectional studies  
-  Experimental studies with independent groups 

Dotplot Boxplot with 

points 

Boxplot Violin plot 

(with or 

without 

points) 

Bar graph 

Outcome 

variable 

Continuous Continuous 

 

Continuous 

 

Continuous 

 

Counts & 

proportions 

Sample size Small Medium Large Medium to 

Large 

Any 

Data 

distribution 

Any Any Do not use for 

bimodal data 

Any N/A 

Free violin plot tool: https://interactive-graphics.shinyapps.io/violin/ 

 

https://interactive-graphics.shinyapps.io/violin/
https://interactive-graphics.shinyapps.io/violin/
https://interactive-graphics.shinyapps.io/violin/
https://interactive-graphics.shinyapps.io/violin/
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Two Types of Solutions 

• Author level 

• Small interactive graphic program file that authors 
can upload in data supplement of a published paper 

• Journal level 

• Interactive graphic in online manuscript 

• User customizes data presentation before printing 

• Ensure compatibility 
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Changing data presentation is critical to 
promote transparency 
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All data presentation methods are a 
reflection of reality… 

Select methods that minimize distortion 
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What can you do? 

• Banish bar graphs from your papers 
       and talks 

• Reviewers & editors: Request figures that show 
      data distributions 

• Talk to editors about improving data 
presentation in their journals 

• Work with statistics instructors to organize data 
presentation training for trainees, junior 
investigators and senior researchers 
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New policy includes a variety of steps to improve reporting & transparency, including 

discouraging the use of bar graphs and encouraging authors to show the data 

distribution. 

This week we go further. Alongside every life-sciences manuscript, we will publish 

a new reporting-summary document.  
 

This is another step in encouraging transparency, in ensuring that papers contain 

sufficient methodological detail, and in improving statistics reviewing and reporting.  

May 2017 

https://www.nature.com/authors/policies/ReportingSummary.pdf
https://www.nature.com/authors/policies/ReportingSummary.pdf
https://www.nature.com/authors/policies/ReportingSummary.pdf
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Efforts are under way 

• Initiatives by journals 

• Pre-publication efforts 
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Conclusion 

• Good statistical practice, as an essential 
component of good scientific practice, 
emphasizes principles of good study design and 
conduct, a variety of numerical and graphical 
summaries of data, understanding of the 
phenomenon under study, interpretation of 
results in context, complete reporting and 
proper logical and quantitative understanding of 
what data summaries mean.  

• No single index should substitute for scientific 
reasoning. 
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