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Preferences

• Studied for long time from philosophers and logicians.

• Computer scientists are interested in computational tools for efficiently
reasoning about preferences in order to provide personalized services.

• Applications: recommender systems, computational advertisement,
intelligent user interfaces, cognitive assistants, personalized medecine,
personal agents, robots,...

Preferences in AI Research

• Preference modelling

• Preference representation

• Preference reasoning

• Preference elicitation

• Preference learning
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Preferences
Some of my interests:

• Preference (utility) elicitation

• Interactive social choice

• Ranking aggregation

Some of the challenging questions:

• How to efficiently elicit user preferences (i.e. utilities) in an interactive
way (by asking informative questions) in order to limit the cognitive
burden posed to the user ?
(utility elicitation)

• How do we elicit and aggregate the preferences of a group of users ?
(interactive social choice)

• How do we learn preferences from a dataset of ranking data ?
(ranking prediction and ranking clustering)
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Recent AI trends in Incremental
Elicitation

Key ideas:

• Optimal or near-optimal solutions even with partial preference
information

• Incremental approach asking informative queries (a bit like active
learning)

In which domains?

• Decision aid

• Recommender systems

• Social choice

• Sequential decision-making: MDPs and reinforcement learning

• Decision-making under uncertainty
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Goal: Utility Maximization

Assume X is the set of possible choices (possibly very large)
The set X may be combinatorial, as the result of a constraint satisfaction
problem, ...

The recommendation setting

• User’s utility as weighted combination of item features

U(x) = w · x

where w and x are vectors.

• Recommendation as utility maximization problem subject to feasibility
constratins:

x∗ = arg max
x∈X

w · x

• Preference elicitation becomes the problem of learning utility weights w
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Handling Preferences

We don’t know w , but observe some user prefences

“a is at least as preferred as b” is formalized by a constraint that weight
vector w must satisfy

w · (a− b) ≥ 0

thus pairwise preferences induce linear constraints.

Handling noisy feedback

Users may not always state their true preferences!

• Allow constraints to violated by introduce a slack variable ε; the
constraints representing preferences become: w · (a− b) ≥ −ε

• Several preferences, all with slack εi . We look for w ∈ W such that,
either all constraints are satisfied, or the sum of violations

∑
i εi is small

as possible.

Paolo Viappiani <paolo.viappiani@lip6.fr> — Decision-making and Data Science Workshop — July 12, 2017
6/33



C N R S - U P M C L A B O R A T O I R E D ’ I N F O R M A T I Q U E D E P A R I S 6

Handling Preferences

We don’t know w , but observe some user prefences

“a is at least as preferred as b” is formalized by a constraint that weight
vector w must satisfy

w · (a− b) ≥ 0

thus pairwise preferences induce linear constraints.

Handling noisy feedback

Users may not always state their true preferences!

• Allow constraints to violated by introduce a slack variable ε; the
constraints representing preferences become: w · (a− b) ≥ −ε

• Several preferences, all with slack εi . We look for w ∈ W such that,
either all constraints are satisfied, or the sum of violations

∑
i εi is small

as possible.

Paolo Viappiani <paolo.viappiani@lip6.fr> — Decision-making and Data Science Workshop — July 12, 2017
6/33



C N R S - U P M C L A B O R A T O I R E D ’ I N F O R M A T I Q U E D E P A R I S 6

Handling Preferences

We don’t know w , but observe some user prefences

“a is at least as preferred as b” is formalized by a constraint that weight
vector w must satisfy

w · (a− b) ≥ 0

thus pairwise preferences induce linear constraints.

Handling noisy feedback

Users may not always state their true preferences!

• Allow constraints to violated by introduce a slack variable ε; the
constraints representing preferences become: w · (a− b) ≥ −ε

• Several preferences, all with slack εi . We look for w ∈ W such that,
either all constraints are satisfied, or the sum of violations

∑
i εi is small

as possible.

Paolo Viappiani <paolo.viappiani@lip6.fr> — Decision-making and Data Science Workshop — July 12, 2017
6/33



C N R S - U P M C L A B O R A T O I R E D ’ I N F O R M A T I Q U E D E P A R I S 6

Max-Margin Optimization

• Max-margin optimization aims at finding the weight w that explains the
observed preferences as much as possible.

• Introduce a shared margin µ that all constraints have to satisfy

• Aim is to maximize µ while at the same time minimize the sum of the
slacks

Optimization problem

max µ− α||ε||1
s.t . w · (a− b) ≥ µ− εa,b ∀(a, b) ∈ D

w⊥ ≤ wi ≤ w>
ε(a,b) ≥ 0 ∀(a, b) ∈ D

D is the set of binary preferences.
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Setwise Max-Margin Optimization

Main idea

Learn a set of weight vectors, each representing a candidate utility function,
maximizing diversity between the vectors while being as much as possible
consistent with the available feedback.

• We now have k configuration vectors
x1, . . . , xk and k weight vectors w1, . . . ,wk

• User ranking constraints for each of the
weight vectors:

w i · (a− b) ≥ µ− εi
h

• “Diversity” constraints involving each pair
w i ,w j and x i , x j :

w i · (x i − x j ) ≥ µ
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Setwise Max-Margin Optimization

Setwise Optimization Problem

max
x,w,ε,µ

µ− α
k∑

i=1

‖εi‖1 − β
k∑

i=1

‖w i‖1 + γ

k∑
i=1

w i · x i

s.t. w i · (a− b) ≥ µ− εi
(a,b) ∀ i ∈ [k ],∀ (a, b) ∈ D

w i · (x i − x j ) ≥ µ ∀ i, j ∈ [k ], i 6= j

w⊥ ≤ w i ≤ w> ∀ i ∈ [k ]

x i ∈ Xfeasible , εi ≥ 0 ∀ i ∈ [k ]

The optimization retrieves both a set of k configurations and a set of k utility
functions; these can be directly used for asking new queries.

[IJCAI 2016]
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Reformulation
From quadratic formulation to mixed integer programming using some
integer programming tricks.

MILP Forumulation

max µ− α
k∑

i=1

‖εi‖1 − β
k∑

i=1

‖w i‖1 + γ

k∑
i=1

m∑
z=1

pi,i
z

s.t. w i (a− b) ≥ µ− εi
a,b ∀ i ∈ [k ],∀ (a, b) ∈ D

m∑
z=1

pi,i
z − pi,j

z ≥ µ ∀ i, j ∈ [k ], i 6= j

pi,i
z ≤ min{wmaxx i

z , w i
z} ∀ i, j ∈ [k ], i 6= j, ∀ z ∈ [m]

pi,j
z ≥ max{0, w i

z − wmax(1− x j
z)} ∀ i, j ∈ [k ], i 6= j, ∀ z ∈ [m]

w⊥ ≤ w i ≤ w> ∀ i ∈ [k ]

x i ∈ Xfeasible , ε
i ≥ 0 ∀ i ∈ [k ]
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The “Full” Elicitation Algorithm

• Initially empty response set D
• At each step solve the MILP

• Present the configurations x1, . . . , xk to the user by asking a series of
pairwise queries

• New replies are added to D.

• Final recommendation: optimization with set size k = 1
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Experimental Setting

Simulated users

• Normal distribution

• Sparse normal distribution (80% of the weights set to zero)

• Indifference-augmented Bradley-Terry user response model

• Utility loss: quality of recommendation

max
x∈X

u(x)− u(x∗)

where x∗ is the recommended object

• Settings:
• Small synthetic configuration problems
• Large “realistic” configuration scenarios

• Competitors: Bayesian methods

Paolo Viappiani <paolo.viappiani@lip6.fr> — Decision-making and Data Science Workshop — July 12, 2017
12/33



C N R S - U P M C L A B O R A T O I R E D ’ I N F O R M A T I Q U E D E P A R I S 6

Experimental Results
Synthetic dataset
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Experimental Results
Realistic dataset (PC recommendation task)
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Multi-user setwise max-margin
Intuition

• Aim: to elicit simultaneously the preferences of M users

• Transfer preference knowledge from one user to other similar ones

Each user is represented by a set of weights wu,i ; the spread of user u is:

v(u) := c
∑
i 6=j

‖wu,i − wu,j‖2

Gaussian kernel for user “similarity”

k(u, y) := exp
(
−τ
∑

i,j

‖wu,i − wy,j‖2
)

Aggregated estimated utility:

(1− v(u)) wu,i · x + v(u)
∑
y 6=u

(1− v(y))k(u, y)wy · x

This is then plugged into the setwise maxmargin optimization.
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Which user to ask?

• We should select the user in a “smart” way

• Allow to significantly reduce residual uncertainty
• Provide useful information about other “similar” users

Experimental results (to appear in ADT 2017)
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Preference Aggregation

Overview

• Preferences can be expressed in many forms
• Rankings are a popular format
• 〈Espresso,Capuccino,Tea,Americano〉.
• Ranking may be partial

What do we want to use rankings for?

• Social choice: take a decision together

• Clustering: summarize the preferences of a group of people
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Computational Social Choice

Background

• Voting is an effective method for collective decision-making, used in
political elections, technical committees, academic institutions.

• Interest in voting has increased in computer science both academically
and in the industry

• Example applications: online web systems, group decision-making
(scheduling a meeting), recommender systems

From standard social choice to incremental vote elicitation:

• Traditional voting schemes make stringent assumptions about the
preference information provided by voters

• May be useful to deal with voting protocol requiring only partial
preference information (e.g. partial rankings)

• Idea: incremental elicitation of preferences in a social choice context
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Notation:
• set X of m alternatives
• n voters (or agents)
• Preference profile v = (σ1, . . . , σn) where σi is a linear order (ranking)
• σ(x) gives the rank of object x
• s(a, v): score of item a in profile v
• A social choice function f maps a set of rankings (preference profiles)

into a single winner:
f : v → X

Some common social choice functions

• Plurality: the alternative with highest number of first position wins

• Borda: first position gives n points, second position n − 1, . . .

• Scoring rules: (generalizes both plurality and Borda)
A score w(r) is assigned to each position r ∈ {1, ..., n}.
Each item is associated to an overall score s(i)=

∑m
j=1 w(σj (i)).

• Maximin

• Copeland

• . . .
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Social Choice with Partial Preference
Assume we are given a partial profile p = (p1, . . . , pn) (consisting of partial
rankings).
Let C(p) be the set of possible competitions of p (extending each element to
a full ranking)

• Necessary winner: a choice that will be always be picked not matter
how the preference rankings are extended

x ∈ NW iff ∀C′ ∈ C(p) x = f (C(p))

• Possible winner: a choice that may be a winner for at least a particular
full extension of the preference rankings

x ∈ PW iff ∃C′ ∈ C(p) : x = f (C(p))

• Example: with plurality, if A has 10 votes, B has 9 and C has 7 and two
users have not stated their most-preferred candidate

NW = { }; PW = {A,B}
• However, there will usually be too many possible winners and not

enough necessary winners...
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Minimax Regret

• Approximate winner determination with incomplete voter preferences

• Let s(x , v) be the score obtained by x with profile v

• Definition of minimax regret

PMR(x , x ′, p) = max
v∈C(p)

s(x ′, v)− s(x , v)

MR(x , p) = max
a′∈A

PMR(x , x ′, p)

MMR(p) = min
a∈A

MR(x , p)

[Lu and Boutilier, 2011]
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Observation

The regret-minimizing alternative may not be a possible winner for some
voting rules.

Example

Consider 2-approval, scoring rule with positional weights (1, 1, 0, . . . , 0):

• Alternative b has exactly score 2k

• One among a and c has a score of at least 2k + 1

• a and c are possible winner (b is not)

• b has a regret of k + 1, a and c of 2k + 1
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Regret Computation

The regret can be decomposed over the users: [Lu and Boutilier, 2011]

PMR(x , y , p) = max
v∈C(p)

s(y , v)− s(x , v) =
∑

i

max
vi∈C(pi )

s(y , vi )− s(x , vi )

In practice we check the contribution to max regret for each individual user.
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To compute contribution to regret PMR(a,w) of agent i :

• Determine if we know whether the agent prefer a to w , prefer w to a or
if they are currently incomparable

• Build the following lattices representing necessary preferences:

For Borda, if w � a, the adversary will place all elements such that B is as
large as possible. [Benabbou et al, 2016]: extension of this model to

multi-attribute domains.
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Ranking Aggregation and Clustering

Overview

• Preferences expressed as rankings; we consider aggregation with
scoring rules.
• Note: a full ranking is given as output !

• We study how scoring rules can be formulated as the minimization of
some distance measures between rankings.
• New family of aggregation methods, called biased scoring rules.
• New distance functions, giving different weight to positions
• We consider as well the case of partial rank data.

• Supervised learning: predict rank of missing items
• Unsupervised learning from ranking: clustering
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Distance Measures for Rankings

• We are given a distance d on rankings and a set of input rankings
{σ1, ..., σm}

• Distances naturally lead to a way to generating an aggregate ranking:

π∗d =arg min
π∈Sn

m∑
u=1

d(π, σu).

where Sn is the permutation group.
π∗d is also called median ranking wrt d .

• Some common distances: Spearman, footrule, Kendall tau
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Spearman
Spearman distance

Spearman distance is defined as taking the squares of the differences of the
ranks:

dS(π, σ) =
∑
x∈X

[π(x)− σ(x)]2.

Note that Spearman can be expressed as follows:
dS(π, σ) = n(n+1)(2n+1)

3 − 2
∑

x π(x)σ(x).

The connection between Borda and Spearman Distance
The Spearman distance characterizes the Borda rule:
π∗Borda = arg minπ∈Sn

∑m
u=1 dS(π, σu).

Cfr. Theorem 2.2 in [John I Marden. Analyzing and modeling rank data. CRC Press, 1996].

Paolo Viappiani <paolo.viappiani@lip6.fr> — Decision-making and Data Science Workshop — July 12, 2017
27/33



C N R S - U P M C L A B O R A T O I R E D ’ I N F O R M A T I Q U E D E P A R I S 6

Spearman
Spearman distance

Spearman distance is defined as taking the squares of the differences of the
ranks:

dS(π, σ) =
∑
x∈X

[π(x)− σ(x)]2.

Note that Spearman can be expressed as follows:
dS(π, σ) = n(n+1)(2n+1)

3 − 2
∑

x π(x)σ(x).

The connection between Borda and Spearman Distance
The Spearman distance characterizes the Borda rule:
π∗Borda = arg minπ∈Sn

∑m
u=1 dS(π, σu).

Cfr. Theorem 2.2 in [John I Marden. Analyzing and modeling rank data. CRC Press, 1996].
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• 〈Espresso,Capuccino,Tea,Americano〉 “very close” to
〈Espresso,Capuccino,Americano,Tea〉

• 〈Cappuccino,Espresso,Tea,Americano〉 not-so “close” to
〈Espresso,Capuccino,Tea,Americano〉

Positional Spearman

We define Positional Spearman as a generalization of Spearman distance
giving different weights to rank positions, computed as

dPS(π, σ) =
∑
x∈X

[w(π(x))− w(σ(x))]2 (1)

parametrized by a vector w .

Characterization

Let w be strictly decreasing weights;the positional Spearman distance with
weights w characterizes the scoring rule with the same weights:

π∗SR = arg min
π∈Sn

m∑
u=1

dPS(π, σu).

[IJCAI, 2015]
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Biased Scoring Rules

• sBSR(x) = φx + zx · sSR(x)
parametrized by zx (multiplicative bias) and φx (additive bonus).

• We characterize BSR with item-weighting positional Spearman dIPS ,
allowing to weigh more the important items.

Incomplete Rank Data

• Aggregation of a set of partial input rankings: expected Borda count,
expected scoring rule.

• Distances on partial rankings: dE(PS)(π, σ) = EP(σ̂)[ds(π, σ̂)]
with σ̂ ∈ Sn(σ) being a full ranking extending σ

• and similarly define dE(PS), dE(IPS).
Propositions

• [Kamishima and Akaho, 2009] dE(S) characterizes expected Borda
count.

• dE(PS) characterizes the expected scoring rule.
• dE(IPS) characterizes the expected biased scoring rule.
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Distance-based Clustering
f : {1,...,m} → {1,...,k} assignment of rankings to clusters.
The goal is to minimize the sum of distances:

(f ∗, π̄∗1 , .., π̄
∗
k ) = arg min

f ,π̄1,...,π̄k

k∑
z=1

∑
j:f (j)=z

d(π̄z , πj ).

Algorithm: K-means adapted to rankings.

1 Randomly assign centroids

2 Repeat until convergence

1 Assign rankings to closest centroid
2 Recompute centroids

3 Return centroids, clustering

• Centroid computation: aggregate using a scoring rule; comp. time is
linear in # input rankings and O(n log n) in # items.

• Distances dPS , dIPS can account for specific desired behaviors (more
weight to top positions, bias in favor of particular items).

Paolo Viappiani <paolo.viappiani@lip6.fr> — Decision-making and Data Science Workshop — July 12, 2017
30/33



C N R S - U P M C L A B O R A T O I R E D ’ I N F O R M A T I Q U E D E P A R I S 6

Computation time:
Running time is O(nlogn) wrt # of items, and linear in m (# of rankings).
With 5000 rankings, clustering usually takes few seconds.

k aggregator distance time iterations

2 plurality dPL 0.21 3.00
Borda Spearman 6.99 10.10
scoring rule positional Spearman 4.71 6.05
biased Borda item-w Spearman 5.99 5.55

3 plurality dPL 0.30 3.00
Borda Spearman 13.26 13.15
scoring rule positional Spearman 8.58 7.05
biased Borda item-w Spearman 13.75 8.20

5 plurality dPL 0.47 3.00
Borda Spearman 19.92 11.70
scoring rule positional Spearman 16.08 7.95
biased Borda item-w Spearman 30.34 10.85

10 plurality dPL 0.98 3.00
Borda Spearman 49.17 14.15
scoring rule positional Spearman 37.55 9.50
biased Borda item-w Spearman 71.43 12.95

Sushi dataset (5000 rankings, 10 items).
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Experiment 1: Full Rank Data

Let w be such: wi−wi+1 = γ · (wi+1−wi+2)
(γ controls steepness; γ=1→ Borda).

• We measure the difference between
clusterings (1−Rand index) wrt
clustering with Borda and Plurality.

• When γ increases the clusters are
increasingly similar to that obtained by
Plurality (γ≈1.8 is a “middle ground”).

• “Steeper” scoring rules tends to have
larger concentration in a single cluster.

Experiment 2: Incomplete Rank Data

• Clustering using expected Borda and
three distances on partial rankings
(reduced Spearman, spearman with
Expected Ranks, and sampling
Spearman).

• The heuristic methods works almost as
well as the more demanding approach
based on sampling.
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Conclusions

• Preferences are central to many AI systems

• Active area of research (intersection of operation research,
artificial intelligence, machine learning)

• Incremental preference elicitation for one shot decisions, decision
under risk, sequential decision-making, social choice

• A lot more going on:
• technical tools for dealing with complex criteria (e.g. handling monotonicity in Choquet), inference

techniques for Bayesian learning of preferences, learning preference priors, eliciting rankings,
sorting or outranking, Inverse RL, Bayesian RL with active feedback, lots of works in computational
social choice, active collaborative filtering

Thanks for your attention!

Paolo Viappiani <paolo.viappiani@lip6.fr> — Decision-making and Data Science Workshop — July 12, 2017
33/33


