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“We have discovered a link between...”



Causal discovery: smoking and lung cancer

Results
• clear correlation
• strong risk factor for lung cancer



Chocolate consumption and Nobel prizes

Results
• even stronger link!
• good predictor of chance on Nobel prize... Messerli, “Chocolate Consumption, 

Cognitive Function, and Nobel Laureates”, 
New England Journal of Medicine, 2012



Accident hot spots

Results
• strong positive correlation between Braking heavily and Car Crash?
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+ + ++

regression coefficients



From observation to action

• correlations describe the world as we see it
• causal relations predict how the world will change when we intervene

 main goal of causal discovery



Challenge: recognize causal pathways from data
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A popular saying

Why do people love to say that correlation does not imply causation?

“correlation does not imply causation”

“correlation is not causation”

“correlation does not prove causation”

Daniel Engber: “The internet blowhard’s favorite phrase” 
http://www.slate.com/articles/health_and_science/science/2012/10/correlation_does_not_imply_causation_how_the_internet_fell_in_love_with_a_stats_class_clich_.html



Big data and causality

• [...] society will need to shed some of its
obsession for causality in exchange for simple

correlations: not knowing why but only what. This
overturns centuries of established practices and

challenges our most basic understanding of how
to make decisions and comprehend reality.

Mayer-Schönberger & Cukier



Big data and causality

But faced with massive data, this approach to science -
hypothesize, model, test - is becoming obsolete. [...] Petabytes

allow us to say: ‘Correlation is enough.’ We can stop looking for models.
We can analyze the data without hypotheses about what it might show.
We can throw the numbers into the biggest computing clusters the

world has ever seen and let statistical algorithms find
patterns where science cannot.

Anderson (EiC Wired)



correlation does not imply causation

thus

it is impossible to discover causal relationships from purely observational data

Logical reasoningfallacy



In fact

a single, simple correlation does not imply causation

yet

it is possible to discover causal relationships from purely observational data 
(which of course requires some assumptions, as any statistical approach) 



Causal direction

does X cause Y            or does Y cause X?



Causal direction

easy to explain as

Y = f(X) + noise

difficult to explain as

X = g(Y) + noise

X Y Y X



Real-world cause-effect pairs

X: altitude of weather station

Y: temperature (average over 1961-1990)

http://webdav.tuebingen.mpg.de/cause-effect/
http://www.kaggle.com/c/cause-effect-pairs



More variables: build causal model

Sachs et al., “Causal protein-signaling networks derived from multiparameter single-cell data”, 2005

this talk
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Structural Equation Models

Definition: SEM/SCM [Pearl, 2000; Wright, 1921]

• a set of d observed random variables {X1,..,Xd} and corresponding latent 
variables {E1,..,Ed},

• a set of d structural equations

with pa(i) the observed direct causes (‘parents’) of Xi

• a joint probability distribution p(E1,..,Ed) on the latent variables
• inducing a joint probability distribution p(X1,..,Xd) on the observed variables

Xi  fi X pa(i ),Ei effect

causal 
mechanism

‘noise’

direct causes



Graphical model equivalent

• variables become vertices
• direct causal mechanisms become arcs from cause to effect
• latent noise variables implicit
• note: SEM structure + observed probability distribution ≈ Bayesian network

structural equation model

X3

X1

X5

X2

X4

X1  f1 E1 
X2  f2 E2 
X3  f3 X1, X2 ,E3 
X4  f4 X3,E4 
X5  f5 X2 , X3,E5 

graphical representation



Interventions in a SEM

• (externally) force the value of variable Xi to a specific value / distribution
• denote: do(Xi = ξ)

structural equation model

X3

X1

X5

X2

X4

X1  f1 E1 
X2  f2 E2 
X3  f3 X1, X2 ,E3 
X4  f4 X3,E4 
X5  f5 X2 , X3,E5 

graphical representation



do(Xi = ξ)
• replaces corresponding causal mechanism
• graphical: removes incoming arcs 
• only impacts on observed distribution of causal descendants

X3

X1

X5

X2

X4


X1  f1 E1 
X2  f2 E2 
X3  

X4  f4 X3,E4 
X5  f5 X2 , X3,E5 

Interventions in a SEM

override causal mechanism intervention on X3



• given a SEM structure with observed distribution p(X1,..,Xd)
• intervention do(Xi = ξ)
• predict impact on distribution of other observed nodes: p(Xj | do(Xi = ξ))

• note: p(Xj | do(Xi = ξ)) ≠ p(Xj | Xi = ξ)!

X3

X1

X5

X2

X4



Prediction in a SEM

p X5 do X3      ?



• given a SEM structure with observed distribution p(X1,..,Xd)
• intervention do(Xi = ξ)
• predict impact on distribution of other observed nodes: p(Xj | do(Xi = ξ))

• do-calculus [Pearl, 2000]: formal method to express p(Xj | do(Xi = ξ)) in terms 
of p(X1,..,Xd)

X3

X1

X5

X2

X4



Prediction in a SEM

p X5 do X3      ?

for example: predict the effect of 
treatment for an individual patient 
(assuming a known structure, often 
without confounders)



Prediction in practice

• given observed data from some distribution p(X1,..,Xd) 
• some reasonable assumptions, 
• can we still predict p(Xj | do(Xi = ξ))?

X3

X1

X2

X4

X5 ?  p X j do Xi    ?data

p X1, X2 , X3, X4 , X5 

+



Prediction in practice

• given observed data from some distribution p(X1,..,Xd) 
• some reasonable assumptions, 
• can we still predict p(Xj | do(Xi = ξ))?

• Yes! (sometimes): provided we can infer something about the structure…

X3

X1

X2

X4

X5 ?  p X j do Xi    ?data

p X1, X2 , X3, X4 , X5 

+
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Some background theory and assumptions

Causal DAG assumption
• real-world consists of networks of causally 

interacting variables,
• subset of these variables observed in 

experiments

underlying causal DAG G 
(Directed Acyclic Graph) 

B

A

F

G

D

C

E

confounders

p X   p Xk pa Xk  
k1

K



parents of Xk in G



From causal structure to probabilities and back 

Key insight:
• underlying causal structure is responsible for observed probability 

distribution
• identify characteristic features in the distribution to reconstruct the model

Main issues:
• what characteristics?
• how to handle latent confounders?

But also:
• dealing with uncertain (structural) conclusions
• complex interactions, mixed/missing data, background knowledge, etc.
• scalability to large models and/or large data sets
• ...



Some background theory and assumptions

Probabilistic independence constraints

•

•

•

X Y       :   p X Y   p X 
X Y Z       :   p X Y ,Z   p X Z 
X Y Z       :   p X Y ,Z   p X Z 





“X is independent of Y”

Independence 

Empty tank

Car colour

Flat battery



Some background theory and assumptions

Probabilistic independence constraints

•

•

•

X Y       :   p X Y   p X 
X Y Z       :   p X Y ,Z   p X Z 
X Y Z       :   p X Y ,Z   p X Z 





Conditional independence 

Drinking 
Heavily

Hangover

Party

“X is conditionally
independent of Y

given Z”



Some background theory and assumptions

Probabilistic independence constraints

•

•

•

X Y       :   p X Y   p X 
X Y Z       :   p X Y ,Z   p X Z 
X Y Z       :   p X Y ,Z   p X Z 





Conditional dependence 

Empty tankFlat battery

Car doesn’t 
start

“X is (conditionally) 
dependent of Y

given Z”



From causal graph to (in)dependencies and back

• Given a causal graph, we can read off all conditional (in)dependencies

• For causal inference we need to invert this and reason in the opposite 
direction:

Given an observed set of conditional (in)dependencies, e.g., derived from a 
set of data, what can we say about the underlying causal graph?



Key connection: two rules

1. X Y [Z ]      :   Z  X   Z Y 

“is a cause of”square brackets
denote ‘minimal’

“if variable Z makes variables X and Y independent, then Z 
must have a causal relation to X and/or Y”

Minimal conditional independence 

Drinking 
Heavily

Hangover

Party Reasoning:
every possible DAG in which variables 
X and Y are dependent when we do not 
condition on Z, yet become independent 
when we do condition on Z, has a 
(possibly indirect) directed path from X
to Z and/or from Y to Z



Key connection: two rules

1. X Y [Z ]      :   Z  X   Z Y 

“if variable Z makes variables X and Y independent, then Z 
must have a causal relation to X and/or Y”

Y

Z

X
X

Z

Y X

Z

Y

W

X
Z2

Y

Z1

also applies to 
sets Z = {Z1,Z2,...}independent of other

observed or latent variables



Key connection: two rules

1.

2.

“if variable Z makes variables X and Y dependent, then Z 
cannot have a causal relation to X and/or Y”

X Y [Z ]      :   Z  X   Z Y 
X Y [Z ]      :   Z  X   Z  Y 


“is NOT a cause of”

Minimal conditional dependence (‘v-structure’)

Empty tankFlat battery

Car doesn’t 
start

Reasoning:
a DAG in which variables X and Y are 
independent when we do not condition 
on Z, yet become dependent when we 
do condition on Z, cannot have a 
directed path from Z to X, nor from Z to Y



Key connection: two rules

1.

2.

“if variable Z makes variables X and Y dependent, then Z 
cannot have a causal relation to X and/or Y”

X Y [Z ]      :   Z  X   Z Y 
X Y [Z ]      :   Z  X   Z  Y 


Y

X

Z
X

Z

Y

W
X

Z

Y

Z1

Y

Z2

X

independent of
other observed or

latent variables

also applies to 
sets Z = {Z1,Z2,...}
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Logical Causal Inference (LoCI)

1.

2.

3. [something slightly more complicated, needed for completeness]

+ subsequent logical deduction on standard causal properties

• transitivity

• acyclicity

Theorem: “LoCI rules are sound and complete for causal discovery in the 
presence of latent confounders and selection bias.” [Claassen & Heskes, 2011]

X Y [Z ]      :   Z  X   Z Y 
X Y [Z ]      :   Z  X   Z  Y 


X Y   Y  Z  : X  Z 
X Y  : Y  X 



• introduce efficient search strategy over subsets

Example – infer causal relation

A

C D

E

G
F

B

underlying causal structure G



• introduce efficient search strategy over subsets
• identify minimal in/dependencies in subset

pick subset

Example – infer causal relation

A

C D

E

G
F

B

underlying causal structure G

A

C

F

A F [C]   :  C  A   C  F 



• introduce efficient search strategy over subsets
• identify minimal in/dependencies in subset
• collect implied causal information in list

Example – infer causal relation

A

C D

E

G
F

B

underlying causal structure G
collect in list

A

C

F

A F [C]   :  C  A   C  F 



• introduce efficient search strategy over subsets
• identify minimal in/dependencies in subset
• collect implied causal information in list
• repeat...

pick new subset

Example – infer causal relation

A

C D

E

G
F

B

underlying causal structure G

A D [C]   :  C  A   C  D ⁄ 
A

C D

add to list



Example – infer causal relation

• introduce efficient search strategy over subsets
• identify minimal in/dependencies in subset
• collect implied causal information in list
• find new causal information through logical deduction

A

C D

E

G
F

B

underlying causal structure G

A D [C]   :  C  A   C  D ⁄ 

causal relation!

A

C D



Example – infer causal relation

• introduce efficient search strategy over subsets
• identify minimal in/dependencies in subset
• collect implied causal information in list
• find new causal information through logical deduction
• finally: output causal model

A

C D

E

G
F

B

underlying causal structure G inferred causal model P

“can’t tell”

C

A

E

G

D

B

F

“not a cause of”

“is a cause of”
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Improving reliability

• categorical decisions based on finite data are not robust
• mistakes propagate through the model
• impact of insecure decisions not visible in output

• Idea: distinguish between reliable and ‘marginal’ conclusions

• Goal:

Data
Data

Background
knowledge

Causal
Discovery
Algorithm

Data

Assumptions

p(“X Y”|D,I)



Bayesian Constraint-based Causal Discovery

p(D| ,I), … p(D| ,I ),

A

G

C

E

A

G

C

E

A GC E, ,,{ }
1: select (new) subset of variables 
from D

2: compute Bayesian likelihoods for all
marginal structures G over selected subset

3: translate into logical causal statements

5: rank and process into causal model

repeat
until done

4: collect in global list

A

GC
E

B

H

D

F

Claassen & Heskes,
best paper award UAI 2012



Probability of a causal relation

• BCCD accuracy can be 
‘tuned’ by changing the 
threshold

• competitors such as 
(conservative) FCI shift the 
balance between 
(in)dependence decisions, 
but cannot tune accuracy of 
causal statements 

• good (slightly conservative) 
estimate of p(“X Y”|D)
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Heritability factors in adult ADHD

• ADHD - Attention Deficit Hyperactivity Disorder 

• Two types of symptoms:
- Hyperactivity / Impulsivity
- Inattention / concentration problems

• Highly heritable

• DAT1 gene related to brain reward / motivation functioning, and associated 
with ADHD in adulthood(1)

M. Hoogman et al., “The dopamine transporter haplotype
and reward-related striatal responses in adult ADHD”,
European Neuropsychopharmacology (2012)



Previous fMRI results

• Risk haplotype is strong risk factor for ADHD
• Significant link between reward related brain activation and ADHD
• Weak dependency between haplotype and activation?

• Relevant? How to interpret?? Need to understand the causal interactions

No risk haplotype
Risk haplotype



BCCD on IMpACT data

• Sample size =164 (patients = 87, controls=77)
• probabilities on presence/absence of cause-effect relations, both direct and 

indirect
• includes background knowledge that nothing can causes risk haplotype 

and diagnosis patient/control cannot cause hyperactivity and inattention

Activation Smoking Hyperactivity Inattention Patient/Control Medication Risk haplotype

Activation 50% 50% 50% 100%
Smoking 66% 66% 66% 100%
Hyperactivity 100%
Inattention 50% 69% 86% 94% 92% 100%
Patient/Control 50% 66% 100% 100% 89% 100%
Medication 89% 89% 89% 100%
Risk haplotype

A does not cause B:A causes B:



BCCD on IMpACT study

• global model for ADHD
• risk haplotype does appear to affect (striatal response) activation, but only 

via inattention
• total effect size: Cohen’s d = 0.14 (not significant)

ActivationSmoking

Hyperactivity

Medication

Patient/Control

DAT1

Inattention

98%

>99%

>99%

>99%

63% 55%

>99%E. Sokolova et al., “Causal discovery 
in an adult ADHD data set suggests 
indirect link between DAT1 genetic 
variants and striatal brain activation 
during reward processing”,
American Journal of Medical Genetics 
Part B: Neuropsychiatric Genetics, 
2015



• global model for ADHD
• risk haplotype does appear to affect (striatal response) activation, but only 

via inattention
• total effect size: Cohen’s d = 0.14 (not significant)

BCCD on IMpACT study

ActivationSmoking

Hyperactivity

Medication

Patient/Control

DAT1

Inattention

98%

>99%

>99%

>99%

63% 55%

>99%E. Sokolova et al., “Causal discovery 
in an adult ADHD data set suggests 
indirect link between DAT1 genetic 
variants and striatal brain activation 
during reward processing”,
American Journal of Medical Genetics 
Part B: Neuropsychiatric Genetics, 
2015



Comorbidity between autism and ADHD

E. Sokolova et al., A causal and 
mediation analysis of the 
comorbidity between attention 
deficit hyperactivity disorder 
(ADHD) and autism spectrum 
disorder (ASD), Journal of Autism 
and Developmental Disorders, 
2017
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Big data

• many applications typically contain thousands of variables (e.g. genetics): 
large p

• learning optimal sparse Bayesian networks is NP-hard [Chickering,1995]

 high-dimensional ‘big data sets’ not suitable for causal discovery?

Ongoing NWO Top Grant with
Aad van der Vaart



Big data

Answer(-ish)

• learning sparse causal models is not NP-hard! [Claassen, Mooij, Heskes, 2013]

• modular approach: split up in (many....) overlapping subproblems

• for sparse models feasible up to thousand nodes

• parallelize algorithms to utilize GPU power [Fabian Gieseke, tbd]



Big data

• in theory: more data = more reliable output causal model

• in practice too much data, large N, can hurt! (weak dependencies)
 ‘everything is connected to everything else, but we have no clue how’

• large (p,N): standard faithfulness insufficient for uniform consistency: 
theoretical analyses typically based on strong faithfulness assumptions

‘default’ faithfulness ‘strong’ faithfulness ‘weak’ faithfulness



Big data

Possible approach

• forget about faithfulness 

• change focus: complete model  all ‘relevant’ causal relations

• similar (but simpler) problems, e.g., needle in a haystack, have been 
tackled under weaker assumptions (weak ℓq-balls)

‘default’ faithfulness ‘strong’ faithfulness ‘weak’ faithfulness

no ‘accidental’
causal cancellations

G. Bucur et al., Robust causal 
estimation in the large-sample limit 
without strict faithfulness, AISTATS, 
2017



Lots of improvements

Other challenges
• allow for complicated models

(feedback in gene-regulatory networks)
• handle mixed data
• overlapping data sets

(multiple experiments)
• longitudinal data sets
• joint estimation of structure

and (treatment) effects

Ultimate goal
• principled causal discovery methods usable for mainstream scientific 

research and data analysis
• available software implementations
• results reported in terms of standard ‘causal confidence measures’

R. Cui et al., Copula PC algorithm for causal discovery 
from mixed data, ECML/PKDD, 2016

R. Rahmadi et al., Causality on longitudinal data: Stable 
specification search in constrained structural equation 
modeling. Statistical Methods in Medical Research, 2017



• Even in the last 20 to 30 years there has
been a pretty big evolution in the statistical tools that we have at

our disposal for actually inferring causality in an observational study
[...] When I talk to my old colleagues at Facebook, they're spending a lot of
time thinking about this problem. If you become increasingly skeptical of the

results of your data analysis, you're going to become increasingly reliant
on these tools for causal inference in observational studies. So I think
that the world is actually moving in the direction of removing the

opacity of the models that it generates. 

Big data and causality

Jeff Hammerbacher
(Cloudera)



Take-home message

Correlation does not imply causation

just a pair of variables
just a single symmetric number summarizing their dependence

Chocolate Nobel Prize

Wealth

unknown underlying causal model

data Chocolate Nobel Prize

inferred causal model

“can’t tell”



Take-home message

Causal discovery from big data

challenging multi-disciplinary research
exciting opportunities

unknown underlying causal model

data

inferred causal model

A

C D

E

G
F

B

“can’t tell”

C

A

E

G

D

B

F
“not a cause of”

“is a cause of”

Many thanks to:
Tom Claassen, Joris Mooij,
Elena Sokolova, Perry 
Groot, Ridho Rahmadi, 
Gabriel Bucur, Ruifei Cui


