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Linked (networked) world 

Electric power grids, the Internet, the Web, and neural net-
works are all large complex systems that share an important 
feature: they are networked. 

Networks: many systems/phenomena can be represented 
(approximated) as graphs: sets of (weakly) interacting entities. 

Networks/graphs from data: what is a node? what is a link? 
Social networks: person, group of people, county  
Brain: single neuron, group of neurons, or region
Internet: single computer or AS (autonomous system) 



Why networks?   

• Support different processes: as many processes as networks

• Improve our understanding of systems/phenomena

• Suggest innovative solutions 
o Deep neural networks 
o Online social networks 
o LinkedIn: career paths of more than 60 000 graduates 

MIT:  Google, IBM, and Oracle
Purdue: Lilly, Cummins, and Boeing 



Social networks  

The largest social network is the acquaintance graph of all living people: 7.4 billion 
(109) nodes.

Web 2.0/3.0 technologies have triggered user-generated content on social media 
making the Web and online social networks complex massive networks. 



Brain connectome 

Mapping of all neural connections 

Massive network: the human brain has 1011 neurons and 1014 connections   

Region of interests: from correlations to connections (structural, functional, and 
effective brain networks) 



Internet 

From CAIDA: two-dimensional image depicting global connectivity among ISPs 

IPv6 supports 2128 (~1038) possible addresses: with the Internet of Things massive networks
are expected to become the cornerstone of our societies and modern business



Processing of massive graphs 

Distributed graph processing problems: 

• Pregel (designed by Google, 2010) 
• Giraph (developed by Yahoo, 2012) utilizes Apache Hadoop's MapReduce
• Giraph is an open-source project used worldwide http://giraph.apache.org/
• August 2013 Giraph is used to analyze Facebook graphs with 1012 edges (200 machines)  

Single machine-sized graph processing problems: 

• X-Stream http://labos.epfl.ch/x-stream is capable of analytics on graphs with upwards of 
64 billion edges on a single machine using only two attached 3TB magnetic disks

• M-Flash http://arxiv.org/abs/1506.01406 enables to easily implement essential graph 
algorithms, including the first single-machine billion-scale eigensolver

• Chaos (2015) is currently capable of working on graphs with over 1 trillion (1012) edges 
on n a single rack of commodity machines - a milestone that could only be reached 
before using HPC or large clusters consisting of hundreds or thousands of machines

http://giraph.apache.org/
http://labos.epfl.ch/x-stream
http://arxiv.org/abs/1506.01406


Current big data technologies are inadequate for handling 
massive graphs, lacking the flexibility to allow non-expert 
users to set up complex analytic tasks, as well as the speed 
and scalability to support analysis of massive graphs on 
commodity hardware. 

 Challenges: 
• Computational models for massive graphs
• Sub-linear graph algorithms
• Scalable graph algorithms
• Local versus global metrics for massive graphs



Challenge 1: Computational models for massive graphs

Computation models for both parallel and stream computing 

Classical models of parallel computation: PRAM and BSP 
(parallel random-access machine and bulk synchronous 
parallel model) 

Stream models (graph stream models) 

Computational classes (NC class) 



Both Pregel and Giraph are inspired by the Bulk Synchronous 
Parallel (BSP) model of distributed computation. 

The Bulk Synchronous Parallel (BSP) abstract computer is a 
bridging model for designing parallel algorithms. 

A BSP computer:  (1) components capable of processing 
and/or local memory transactions (i.e., processors), (2) a 
network that routes messages between pairs of such 
components, and (3) a hardware facility that allows for the 
synchronization of all or a subset of components.

Leslie G. Valiant, A bridging model for parallel computation, Communications of the 
ACM, Volume 33 Issue 8, Aug. 1990 



In complexity theory, the class NC, for “Nick's Class“,  (Pippenger), is 
the set of decision problems decidable in poly-logarithmic time on a 
parallel computer with a polynomial number of processors. 

The class P – tractable problems (Cobham's thesis)  
NC – problems that can be efficiently solved on a parallel computer

NC = P – most researchers suspect this to be false, meaning that 
there are probably some tractable problems that are “inherently 
sequential” and cannot significantly be sped up by using parallelism.

However, rigorous algorithmic analyses of both parallel and stream 
models have not been completely addressed yet.  



Challenge 2: Sub-linear graph algorithms

Sub-linear graph algorithms with guaranteed approximation

Sub-linear time algorithms and sub-linear space algorithms  

Randomized algorithms, Approximation algorithms  

Property test: to distinguish graphs with a given property from 
graphs that are “far” from having the property 



Example: approximating the Average Degree

Estimating the mean and moments of a sequence of n integers is a 
classic problem in statistics. 

n numbers: almost all numbers in the input set are 1 and a few of 
them are n − 1. 

The average degree of a graph with n vertices can be approximated 
using only O(n0.5/ε) vertices within a factor of 2 + ε.

U. Feige “On sums of independent random variables with unbounded variance, and 
estimating the average degree in a graph” SICOMP 35(4): 964-984 (2006)

T. Eden, D. Ron, C. Seshadhri, “Sublinear Time Estimation of Degree Distribution Moments: 
The Arboricity Connection,” http://arxiv.org/abs/1604.03661 (April, 2016) 

http://arxiv.org/abs/1604.03661


Example: counting triangles 

Triangle counting is a key operation in graph analysis for graph 
modeling, bioinformatics, social networks, and community analysis. 

Tool for counting the number of triangles: 
• Fast matrix multiplication 
• Provable algorithms that employ sampling methods for 

approximate triangle counting
• Triangle counting in the streaming setting 

Many of the algorithms for triangle counting read the entire graph.



Approximate triangle counting

• M. N Kolountzakis, G. L Miller, R. Peng, and C. E Tsourakakis. Efficient triangle counting 
in large graphs via degree-based vertex partitioning. Internet Mathematics, 8(1-2):161–
185, 2012.

• S. Arifuzzaman, M. Khan, and M. Marathe. Patric: A parallel algorithm for counting 
triangles in massive networks. In Proceedings of the 22nd ACM international 
conference on Conference on information & knowledge management, pages 529–538. 
ACM, 2013.

• C. Seshadhri, A. Pinar, and T. G. Kolda. Fast triangle counting through wedge sampling. 
In Proceedings of the SIAM Conference on Data Mining, 2013.

• K. Tangwongsan, A. Pavan, and S. Tirthapura. Parallel triangle counting in massive 
streaming graphs. In ACM Conference on Information & Knowledge Management 
(CIKM), 2013. 

• Y. Lim and U Kang, MASCOT: Memory-efficient and Accurate Sampling for Counting 
Local Triangles in Graph Streams, Proceedings of the 21th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, Pages 685-694, KDD '15, 2015.  



Triangle counting in the streaming setting 

• K. J. Ahn, S. Guha, and A. McGregor. Graph sketches: sparsification, spanners, and subgraphs. In 
Principles of Database Systems, pages 5–14, 2012. 

• D. M. Kane, K. Mehlhorn, T. Sauerwald, and H. Sun. Counting arbitrary subgraphs in data streams. 
In International Colloquium on Automata, Languages, and Programming (ICALP), pages 598–609, 
2012.

• M. Jha, C. Seshadhri, and A. Pinar. A space efficient streaming algorithm for triangle counting using 
the birthday paradox. In Proceedings of the 19th ACM SIGKDD international conference on 
Knowledge discovery and data mining, KDD ’13, pages 589–597, New York, NY, USA, 2013. ACM.

• A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu. Counting and sampling triangles from a 
graph stream. In International Conference on Very Large Databases (VLDB), 2013. 

• K. Tangwongsan, A. Pavan, and S. Tirthapura. Parallel triangle counting in massive streaming 
graphs. In ACM Conference on Information & Knowledge Management (CIKM), 2013.

• N. K. Ahmed, N. Duffield, J. Neville, and R. Kompella. Graph sample and hold: A framework for big 
graph analytics. In Conference on Knowledge Discovery and Data Mining (KDD), 2014. 

• A. McGregor, S. Vorotnikova, and H. T. Vu, Better Algorithms for Counting Triangles in Data 
Streams, The Principles of Database Systems (PODS) PODS’16, June 26-July 01, 2016.



Example: wedge sampling for counting triangles 

The term wedge refers to a path of length 2

The mathematical analysis 
of the method is a direct 
consequence of standard
Chernoff-Hoeffding bounds

This estimate is independent of the size of the graph, though the 
preprocessing required by the method is linear in the number of 
edges (to obtain the degree distribution)  



26492 wedges 



Approximately Counting Triangles in Sublinear Time

Query access to the graph: 

1) Degree queries, in which the algorithm can query the degree 
dv of any vertex v. 

2) Neighbor queries, in which the algorithm can query what 
vertex is the i-th neighbor of a vertex v, for any i ≤ dv. 

3) Vertex-pair queries, in which the algorithm can query for any 
pair of vertices v and u whether (u, v) is an edge.

T. Eden, A. Levi, D. Ron, and C. Seshadhri, Approximately Counting Triangles in 
Sublinear Time, 56th Annual IEEE Symposium on Foundations of Computer Science, 
FOCS, 2015, http://arxiv.org/pdf/1504.00954v3.pdf

http://arxiv.org/pdf/1504.00954v3.pdf


Discussed algorithms (and others published in various papers) 
may suggest that many problems have sub-linear algorithms

However, it turns out that these algorithms are more like 
exceptions than a norm. Indeed, many problems have a trivial 
lower bound that exclude sub-linear algorithms.

The wiki sublinear.info collates open problems in the field of sub-
linear algorithms: data stream algorithms, property testing, and 
communication complexity (sub-linear communication).

http://sublinear.info/index.php?title=Main_Page

http://sublinear.info/index.php?title=Main_Page


Challenge 3: Scalable graph algorithms

How to address problems that are intractable when the 
available space is sub-linear in the number of nodes? 

(1) To develop heuristic methods for design of sub-linear 
algorithms for which approximation will not be guaranteed and 
obtained solutions will not be optimal
(2) To consider linear-time algorithms, linearithmic-time 
algorithms (O(n log n)) and/or sub-quadratic-time algorithms 
(o(n2))
(3) To combine  heuristic approaches, graph sampling methods, 
and/or approximation for graph properties/characteristics 



Example: shortest paths

The shortest-path query problem is different from the classical 
single-source and all-pairs shortest paths problems in that there 
are two stages: preprocessing and answering queries.

Scaling point-to-point path queries to large scale social networks 
is challenging for two reasons. 

Latency: it is desirable to answer queries within milliseconds   

Storing paths between each pair of users is infeasible due to 
memory limitations; even for a social network with 3 million 
users, this would require roughly 4.5x1012 entries.



Point-to-point approximate shortest-path query problem: 
• preprocessing algorithm may compute certain 

information 
• shortest-path queries (answered as fast as possible)

LiveJournal social network (5 million nodes, 69 million edges): 
• Answer more than 99.9% of the queries by exploring less 
than 0.2% of the entire network
• Each query can be answered in roughly 365 microseconds

Christian Sommer, Shortest-path queries in static networks, ACM Computing Surveys 
(CSUR), Volume 46 Issue 4, April 2014 



Example: Wedge sampling with approximation of degree distribution 



Challenge 4: Local versus global metrics for massive graphs

(1) algorithms for computing only those graph properties that 
can be estimated only locally from a given node
(2) distributed algorithms with guaranteed approximation 
where each node, from a subset of nodes, can access only 
given small portions of the input network, and 
(3) heuristic methods for designing efficient algorithms with 
provably good practical performance. 



Example: largest eigenvalue of the adjacency  matrix 

By using algebraic graph theory and convex optimization, 
Preciado and Jadbabaie proved that the largest eigenvalue of 
the adjacency matrix can be approximated in terms of the 
number of nodes, edges, and triangles. 

M. Preciado, and A. Jadbabaie, “Moment-Based Spectral Analysis of Large-Scale 
Networks Using Local Structural Information”, IEEE/ACM Transactions on 
Networking, Vol. 21,  Issue 2, 373 - 382, 2013 



Example: SIS epidemic spreading processes  

Upper and lower bounds on the probability that a node is
infective can be estimated using only local information 
(considering only n-hop local topology, for small n), without 
knowing the whole network. 

The results are valid to other ergodic models (such as SIRS, for 
example) and are related to all types of spreading (idea, 
failure, rumor). 

D. Smilkov and L. Kocarev, “Influence of the network topology on epidemic 
spreading”, Physical Review E 85, 016114 (10 pages), 2012







Conclusions 

 Massive networks are expected to become the 
cornerstone of our societies and modern business

 Challenges: 
• Computational models for massive graphs
• Sub-linear graph algorithms
• Scalable graph algorithms
• Local versus global metrics for massive graphs



In the future both the cyber world and our physical world will be integrated 
effectively blurring the gap between the two. 

Humans are interconnected and beyond that all objects of our environment 
are becoming networked forming huge global village. 

“Time has ceased, space has vanished. We now live in a global village . . a 
simultaneous happening.” McLuhan, Medium is the Massage, 1967.   

However, there is a great challenge in front of us. The movie Star Trek: First 
Contact (1996) illustrates this challenge with particular force. In this film, 
mankind is threatened by the Borg Collective – civilization with a group mind. 



The Borg exhibited no hierarchical command structure, instead using a 
structure similar in principle to the internet with no control center and 
distributed processing. 

The ship’s Captain, Jean Luc Picard, is “assimilated” by the Borg as is the 
rest of Picard’s crew. 

There is one character, however, who remains to be assimilated: the good 
android, Data. For a while, it appears that Data is seduced by the pleasure 
of feeling truly alive. In the end, Data comes though, rejecting the Borg 
Queen and saving Captain Picard and his crew. 

Data’s choice shows him to be the most human of all, in spite of losing his 
chance to be, at least in part, corporeally human. 


